
EVALUATION OF DATA OPTIMAL STORAGE SYSTEM

IN HYBRID CLOUD

Miho Imazaki1,3, Satoshi Kaneko1, Norihisa Komoda2 and Takenao Ohkawa3
1Research & Development Group, Hitachi, Ltd., Yokohama, Japan

2Corporate Adviser, Code Solution K.K,.Osaka, Japan
3Graduate School of System Informatics, Kobe University, Kobe, Japan

ABSTRACT

A hybrid cloud is a mix of compute systems, storage systems and services consisting of on-premises systems, private clouds
and public clouds for satisfying requirements such as security and performance. In the case of hybrid cloud configuration

where data are in on-premises storage systems and compute systems is in public clouds, data should be transferred to the
public cloud when a read/write command is issued by compute systems. Thus, long data transfer time is a problem since
the on-premises systems and public clouds are connected by the internet. One possible solution is to create an additional
cache area inside the compute system; however, it is not clear how effective it is. In this paper, we verify the effect of the
data cache by creating the hybrid cloud environment with/without the cache area and measuring input/output latency. We
created the measurement environment in the hybrid cloud with dm-cache technology and set up the assumed workload of
TPC BenchmarkTM E with the write-through mode. The average latency with the cache area reduces by up to 79% compared
to without the cache area, and we confirm the effect of installing cache areas in this environment.

KEYWORDS

Hybrid Cloud, Storage System, Public Cloud, Data Cache

1. INTRODUCTION

The demand for IT infrastructure flexibility increases the number of companies using the public cloud which

is defended as computing services. The public cloud infrastructures are managed by a third-party provider and

shared with multiple users over the internet. However, some users require high performance and have sensitive

data whose they want to keep in their own data centers to manage where are stored. This environment type is

called a on-premises system. And there is another case that some users need a dedicated system environment

for a higher level of security with flexible operations like a public cloud’s ones. For these users, a private cloud
is offered, and it is built in on-premises systems or public clouds by users, therefore users should be managed

private cloud by themselves. As a mentioned above, each system has its own characteristics, and one of the

popular IT environments is using a mix of on-premises system and public clouds, which is called a hybrid

cloud (Weinman, 2016) (Shibambu, 2022). A development and test (dev/test) are one of popular use cases for

the hybrid cloud. This is because users can keep the data in the production environment of secure and

high-performance on-premises systems while create and delete the dev/test environment easily with public

cloud services. For the demand of using modern applications/computing services with the public cloud in the

dev/test however the transferring only the minimum required data to the public cloud securely, one of hybrid

cloud architectures is that a storage system volume in the physical data center’s on-premises system is attached

to a virtual machine (VM) created in the public cloud.

In this dev/test environment, the data in the physical data center should be transferred to the public cloud
as needed. The physical data center is connected to the public cloud through the internet. Public cloud vendors

offer high-speed internet services; however, this has limitations in reducing latency compared to internal

networks. Thus, the problem in this environment is that it takes too long time to complete the data transfer

before starting the dev/test.

To solve this problem, reducing the amount of data transfer and appropriate data placement in storage

systems are important. There are some methods to do this, a data cache and a data tiering (Arteaga et al, 2016)

(Zhang et al, 2010). The data cache method is that creating a data cache area in the public cloud and storing

accessed data in it. And the data tiering method is that setting up a device in the public cloud and storing the

high frequency access data in it. However, it isn’t clear how much each method can reduce the amount of data
transfer. There are related studies: creating and measuring a cache area in a computing system on a public cloud

(Park et al, 2020); creating cache servers among cloud block storage devices (Zhang et al, 2020). However,

they assume only public cloud configurations and does not consider hybrid cloud configurations. Therefore,

we choose the data cache method and measure and evaluate the improvement of data caching technology in

the hybrid cloud.

The rest of this paper organized as follows. Section 2 describes the data cache method in a public cloud.

We describe the measurement environment to show the effect of the data cache method in Section 3, and the

measurement result in Section 4. Finally, Section 5 concludes the paper.

2. DATA CACHE METHOD IN PUBLIC CLOUD

We consider the dev/test environment that the data are in the physical data center and the VM as compute is in

the public cloud. In this environment, there are 2 major issues: it takes a long time to transfer the data from the

physical data center before starting a dev/test; the cost of public cloud storage system is too expensive to store

the all dev/test data. Therefore, the key point to solve them is reducing the amount of data transfer between the

on-premises system and the public cloud. To reduce it, the dev/test application in the public cloud directly need

to access to the dev/test data in the on-premises system. However, this causes high access latency from the

dev/test application to the dev/test data.
One of the solutions to this is that the part of dev/test data, which are frequently accessed from the dev/test

application, are stored in the VM’s data cache area. The compute system where the dev/test application runs

already has a virtual dynamic rando-access memory (DRAM) as a data cache area. However, the size of DRAM

in a public cloud is not large enough and its cost is relatively high if you want to read/write large amount of

data.

To solve this, you can use a virtual volatile storage volume in a public cloud as a data cache area. Figure 1

shows the overview of this solution. In this case, the dev/test data are not necessary to copy to public cloud

before setting up a dev/test environment. When a dev/test application starts to run on the VM, it accesses to

dev/test data in the on-premises, and they are stored in the cache area on VM. After a certain period, only

dev/test data with high access frequency are stored in the cache area, and dev/test data transferring between the

on-premises and the public cloud hardly occurs if the cache area size is appropriate.

Figure 1. Caching data in a public cloud

We describe read and write processes in this configuration. A data cache program checks if there is the

target data in the VM’s DRAM when the application issues a read data request. If the answer is no, the program

checks if the data is stored in the data cache area. If the data are not stored in it, the program commands the

data copy from the on-premises storage system to the data cache area in the VM, then copies it to the DRAM.

And the application reads the target data from the DRAM. After that, it can be read from the DRAM or the

data cache area through the public cloud internal network when the same data are read from the application,

resulting in a shorter response to the application. While about the write process, there are 2 modes:

a write-through mode and a write-back mode (Jouppi, 1993). The write-though mode is that the target data are
written into the DRAM first then written into both the data cache area and the on-premises storage system at

the same time. While the write-back mode is that the target data are written into the DRAM first then write

into the data cache area. And the data are written to the on-premises storage system asynchronously with the

process described above. In this mode, the data cache program can send a write completion message to the

application immediately after writing to the data cache area. Thus, the write process response is shortened.

However, there is a possibility to lose track of how much data were written if an error occurs in the VM before

the data is transferred to the on-premises storage system. While in the write-through mode, the possibility of

data loss is lower than in the write-back mode since the application receives the write completion message is

complete. However, the write process response in the write-through mode is longer than in the write-back mode.

There is the case of no free space in the data cache area due to the read/write process, since the capacity of

the data cache area is limited. In this case, if data have not yet been written to the on-premises storage system,
the data are transferred to it and then deleted from the data cache area. Alternatively, read data with low access

frequency is deleted from the data cache area.

This data cache method is theoretically valid to reduce the data transfer between on-premises system and

public clouds. However, it’s not clear that how effective this method is.

3. MEASUREMENT OF DATA CACHE EFFECT

3.1 Evaluated Environment

To be clear the effectiveness of the data cache method, we consider the verification environment which is

shown in Fig 2. We prepare Hitachi Virtual Storage Platform G370 as the on-premises storage system which

is a block storage and stores the data in the data center, and the Amazon Web Service Elastic Computing (AWS
EC2) with an instance store volume as the compute in the public cloud (Hitachi Vantara, 2018) (Amazon Web

Service, 2022a). An instance store provides temporary block-level storage which is a volatile memory (Amazon

Web Service, 2022a). The storage system and the compute instance relate to AWS Direct Connect 10 Gbps,

which is the AWS high-speed private network service (Amazon Web Service, 2022b). The protocol is iSCSI.

We use the instance store volume as the cache area and set a data cache function with a dm-cache (Thornber,

2015). The dm-cache is a component of the Linux kernel’s device mapper and improves performance of a

block device by dynamically migrating some of its data to a faster and smaller device. When the AWS EC2

needs to access to the data in the on-premises storage system, the data is copied to the instance store volume.

Figure 2. Caching data in public cloud

Figure 3 shows a detail of the cache architecture. The cache area is managed in units of chunks which are

data aggregates. The cache pool is consisted with the cache area and the cache area meta data.

When the read command is committed from the AWS EC2 to the on-premises storage system, the

dm-cache algorithm judges whether the target data are stored in the cache pool. In the case of the data are

stored in it, the data are read from the cache pool through the DRAM and the AWS EC2 doesn’t need to access
to the on-premises storage system. Other than that, the data should be read from the on-premises storage system

to the cache area with the chunk included with the target data and the only target data are read from the cache

area through the DRAM.

Figure 3. Cache area architecture

In this dm-cache environment, we set up the write-through mode which is that data is written to the

on-premises storage system without the cache area when a write command is issued. The reason for choosing

it is that the data with the write back mode may be broken when the system has an error before the data are

transferred to the on-premises storage system.

3.2 Workload and Measurement Condition

The workload in this environment is based on TPC BenchmarkTM E (Transaction Processing Performance

Council, 2015). TPC BenchmarkTM E is an on-line transaction processing benchmark. It models the activity of

brokerage firm that must manage customer accounts, execute customer trade orders, and be responsible for the

interactions of customers with financial markets. And The TPC BenchmarkTM E Input/Output (IO) request

breakdown for data devices is clear in the related research (Chen, 2011). Therefore, in this study, we set up the

issuing IO set as shown in Table 1 and this IO is issued to the device using fio benchmark which is the tool
spawn a number of threads or processes doing a particular type of IO action as specified by a user (Axboe,

2022).

Table 1. I/O patterns

I/O pattern Data size [kByte] Event probability [%]

Random Read 8.0 90.0
Random Write 8.0 10.0

Table 2 shows other measuring conditions in this study. We select 3 types of cache chunk size to confirm

the effect of different chunk sizes. The number of chunks decreases as the chunk size increases since the cache

area size is fixed.

Table 2. Measurement

Item Detail

I/O access range 5 GBytes

Measurement time
AWS EC2 type

Cache area size
Cache chunk size
Volume size in the on-premises storage system

6 minutes
r5d.xlarge (Instance Store: 150 GBytes)

150 GBytes
32 kBytes, 128 kBytes, 160 kBytes
170 GBytes

4. MEASUREMENT RESULTS

We measured IO latencies in this cache environment and compared the differences between the ones

with/without cache area.

Figure 4 shows the result of single I/O average latency in the random read/write mix. The latency with the
cache area and 160 kBytes chunk reduced by maximum 79% compared to without the cache area. Following

this result, we confirmed that there is an effect of data caching in this workload. However, in the case with the

cache area, a chunk read occurred from the storage system in the on-premises system for the first I/O. Therefore,

the latency reduction effect with the cache area at the first time was low.

Figure 4. Single I/O latency: random read / write mix

We evaluated the latency reduction effect for each random read and random write in the measurement result

Figure 4 shows. Figure 5 shows the result of single I/O average latency in the random read. In the case with

the cache area, a chunk read always occurred in the first I/O access. Therefore, the maximum latency, especially
for large chunk sizes, tended to be higher than without the cache area. We thought that the larger the chunk

size is, the higher the maximum latency is. However, the first measurement showed that the 160 kBytes chunk

had a lower maximum latency than the 128 kBytes chunk in this workload. We consider that this was because

the data to be accessed was already stored in the cache area in more cases with the 160 kBytes chunk than with

the 128 kBytes chunk due to the access locality of this workload.

We also thought that the second measurement would have less latency than the first one, since the most of

chunk copies were already done. However, the second maximum latency was 17% higher than the first

maximum latency in the case of 32 kBytes chunk. We believe that this is because of the access locality of this

workload.

Even with the cache area, the average latency was reduced by more than 26% in the first measurement and

by more than 79% in the second measurement compared to the case without the cache area. This means large
latency didn’t occur frequently. Therefore, the effect of using the cache area is confirmed.

Figure 5. Single IO latency: random read

Figure 6 shows the result of single I/O average latency in the random write. We measured them with the

write though mode. However, the larger the chunk size is, the higher the maximum latency is. We think this is

because some write operations are disturbed by reading chunks in the case with the cache area. In the second

measurement, the average latency was the same with and without the cache area since the number of reading

chunks was reduced. Thus, we can confirm the effect of the cache area in this workload. However, there may

be a risk that it leads to particularly poor write performance if the chunk size is not set up appropriately for a

workload and operation time.

Figure 6. Single IO latency: random write

5. CONCLUSION

We verified the effect of data caching, which is one of the methods for reducing the amount of data transfer

between the on-premises system and the public cloud, in the hybrid cloud environment where the compute
system and the storage system were located separately. We created the measurement environment in the hybrid

cloud with the dm-cache technology and set up the assumed workload of TPC BenchmarkTM E with the

write-through mode. And it is confirmed that the average latency with the cache area reduced by maximum

79% compared to without the cache area. The latency increased when transferring chunks occurred, thus having

the cache area increased the difference between maximum and minimum latencies. However, when comparing

the average latencies with/without the cache area, it is considered that setting up the cache area is effective for

the workload verified this evaluation. In addition, we found that setting up an appropriate chunk size is

important especially in write-through mode to prevent write latency degradation, as data access characteristics

change as workload change.

REFERENCES

Amazon Web Service, Inc., (2022a). Amazon Elastic Compute Cloud User Guide for Linux Instance, Available at:
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/concepts.html (Accessed: 2 September 2022).

Amazon Web Service, Inc., (2022b). AWS Direct Connect User Guide, Available at:
https://docs.aws.amazon.com/directconnect/latest/UserGuide/Welcome.html (Accessed: 2 September 2022).

Arteaga, D. et al, (2016). CloudCache: On-demand Flash Cache Management for Cloud Computing. Proceedings of the
14th USENIX Conference on File and Storage Technologies (FAST ’16), Santa Clara, USA, pp. 355-369.

Axboe, J., (2022). fio-Flexible I/O tester rev.3.30, Available at: https://fio.readthedocs.io/en/latest/fio_doc.html (Accessed:
2 September 2022).

Chen, S., (2011). TPC-E vs. TPC-C: Characterizing the new TPC-E benchmark via an I/O comparison study. ACM Sigmod
Record, 39(3), pp. 5-10.

Hitachi Vantara Corporation, (2018). VSP G350 and G370 Hardware – Hitachi Vantara Knowledge, Available at:
https://knowledge.hitachivantara.com/Documents/Storage/VSP_G130_GF350_GF370_GF700_GF900/88-07-
0x/About_Your_System/VSP_G350_G370_Hardware (Accessed: 2 September 2022).

Jouppi, N.P., (1993). Cache write policies and performance. ACM SIGARCH Computer Architecture News, 21(2),
pp. 191-201.

Park, H. et al, (2020). More IOPS for Less Exploiting Burstable Storage in Public Clouds. Proceedings of 12th USENIX
Workshop on Hot Topics in Cloud Computing (HotCloud 20), online.

Shibambu, A., (2022). Migration of government records from on-premises to cloud computing storage in South Africa.
South African Journal of Libraries and Information Science, 88(1), pp.1-11.

Thornber, J. et al, (2015). Linux kernel documentation: Documentation/device-mapper/cache.txt, Available at:
https://www.kernel.org/doc/Documentation/device-mapper/cache.txt (Accessed: 2 September 2022)

Transaction Processing Performance Council, (2015). TPC BENCHMARKTM E Standard Specification version 1.14.0,
Available at: https://www.tpc.org/tpc_documents_current_versions/pdf/tpc-e_v1.14.0.pdf (Accessed: 2 September
2022).

Weinman, J., (2016). Hybrid cloud economics. IEEE Cloud Computing, 3(1), pp. 18-22.

Zhang, G. et al, (2010). Adaptive Data Migration in Multi-tiered Storage Based Cloud Environment. Proceedings of 2010
IEEE 3rd International Conference on Cloud Computing, Miami, USA, pp. 148-155.

Zhang, Y. et al, (2020). OSCA: An Online-Model Based Cache Allocation Scheme in Cloud Block Storage Systems.
Proceedings of 2022 USENIX Annual Technical Conference (USENIX ATC 20), online, pp. 785-798.

