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ABSTRACT 

The existence of internal helpdesk teams is a common occurrence in companies nowadays, especially when considering 
the IT sector. These teams are an expensive resource and are only able to serve a limited number of users at a given 
moment, which evidences the importance of helpdesk teams operating as efficiently as possible. A common occurrence in 

the daily operations of these teams consists in the existence of a set of repeated tasks that could be automated through the 
usage of a chatbot capable of acting on behalf of helpdesk team members. By allowing a chatbot to perform some of 
these repeated actions, helpdesk teams are able to focus on other tasks, thus allowing to increase their productivity. 
Additionally, the usage of chatbots to assist a helpdesk team creates a highly available tool, capable of giving answers in 
a short time frame. In this paper, the design and implementation of such a tool is presented, including concepts and 
approaches related to chatbot development. As a result, a fully functional chatbot named Triton was produced, capable of 
helping employees of a consulting company with helpdesk-related problems and questions. 
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1. INTRODUCTION 

Nowadays, most companies that offer products or services have helpdesk teams available for different 

purposes. The existence of these teams is expensive and cannot guarantee that all users are served 

immediately or in a short time frame. One of the most common tasks of a helpdesk team consists in solving 

repetitive problems or replying to questions that have already been answered somewhere in the past. This 
takes up valuable staff time and could be solved with the existence of a chatbot. Other scenarios include 

cases where users need to access documentation pages, wasting time that helpdesk teams could be dedicating 

to other tasks. The process of searching for documentation could be done by a chatbot in an efficient and 

simple way. The existence of a chatbot allows users to get replies with a low response time compared to a 

human. Alongside low response times, a chatbot allows users to be more productive by automating certain 

tasks. Another advantage of a chatbot is its relatively low maintenance cost compared to a helpdesk team 

with the same level of availability and the fact that it allows the helpdesk team to focus on more important 

tasks. 

The main motivation behind the development of a chatbot to assist the helpdesk team of a consulting 

company lies in the possibility of having an agent capable of integrating the helpdesk team and providing 

support to all employees, thereby freeing the helpdesk team to work on other tasks. Besides freeing the 

helpdesk team, another motivation for the implementation of a chatbot involves the possibility of employees 
getting faster and more straightforward answers to a set of common problems and questions. 

The main goal of the implemented solution consists of having a fully functional chatbot capable of 

interacting with users by answering their questions with useful information regarding aspects such as 

company procedures or troubleshooting. To do so, it is expected for the chatbot to access the internal 

infrastructure of the company, including various knowledge bases in order to retrieve information. Some of 

the most relevant functionalities of the chatbot include the capability of searching information in wikis, 

getting links to open helpdesk tickets, or accessing troubleshooting pages. 



In this paper, the implemented solution is presented, aiming to give a better understanding about the 

research and development process of a chatbot in an industry-focused setting. 

The remainder of this paper is organized as follows. Concepts regarding chatbot development and related 
technologies are presented in Section 2. In Section 3, the architecture of the implemented solution is 

proposed. Section 4 explains the implementation details of Triton. It also discusses various problems faced 

during the development stage, along with their respective solutions. The Triton prototype so far implemented 

is presented in Section 5. Lastly, Section 6 ends this paper and discusses the state of the project, as well as 

future work.  

2. STATE OF THE ART 

A chatbot can be defined as an interface that allows users to interact with a software application using natural 

language. The main objective of a chatbot is to simulate a human conversation, and it can range from a 

simple Question & Answering System to a complex digital assistant. Chatbots may also be referred to as 

Bots, Conversational Agents, Chat Agents, or Conversational Interfaces (Shevat, 2017). 

In this paper, text-based conversational interfaces are the main focus. This type of interface started to 

appear in the 1960s and 1970s in the form of Question Answering systems. The first systems to appear had a 

limited syntactic structure and rejected questions that were out of their scope, but decades later, with 

advances in research on topics such as AI and NLP, the capabilities of these systems evolved into tools that 

are used on a daily basis by all kinds of industries and millions of users (McTear, 2020). Chatbots are an 

example of text-based conversational interfaces and can be found on websites or applications such as 
WhatsApp or Slack. 

According to Google Trends and as of May 2022, the term chatbot has a score (ranging from 0 to 100) of 

78, having peaked in April of 2020. This is an excellent indicator of the popularity of chatbots alongside 

users. Looking at Figure 1, one can infer that chatbots are quite popular at the moment. 

 

 

Figure 1. Google Trends result for the chatbot topic 

According to research published on CNBC, by 2022, chatbots could help reduce business costs by more 

than $8 billion per year, being that the banking and healthcare industries are the ones that can benefit the 

most due to the high volumes of human interaction inherent to these businesses (Gilchrist, 2017). Even back 

in 2017, when this research was published and chatbots were still gaining some traction, the prediction of 

their impact on the industry was significant, which allows one to better understand the possibilities and 

magnitude of this kind of tool, and therefore, why it is interesting to be used to assist a helpdesk team.  

Another interesting aspect regarding chatbots lies on the possibility of integrating them into existing 

messaging applications like Facebook Messenger or WhatsApp. Many of these messaging applications have 

millions of users worldwide, and in the case of WhatsApp, around 2 billion monthly active users according to 
Statista (2022). With these kinds of figures, an opportunity is presented for companies to reach their 

customers, using applications already installed on most of the user's mobile devices, instead of developing 

dedicated applications for chatbots. This would require additional development and deployment time, and 

there is no guarantee that users will be installing a dedicated application just to interact with a bot. Various 

companies have already taken advantage of this, having chatbots available on platforms such as Facebook 

Messenger. Some examples include Volkswagen and Domino’s. 

To build chatbots there are different tools available, being that some of the most known include Google 

Dialogflow (Google, 2022), Microsoft Bot Framework (Microsoft, 2022), Wit.ai (Wit.ai, 2022), IBM Watson 

(IBM, 2022), and Rasa (Rasa, 2022). Each tool has its strengths, but in this paper, the focus will be on Rasa 

given that this tool was chosen due to its open-source nature and the fact that it can easily be deployed in the 

company’s infrastructure. 



To evaluate the performance of a chatbot, different metrics may be collected. These can be grouped into 

different categories called perspectives such as the user experience perspective, the information retrieval 

perspective, the linguistic perspective, the technology perspective, and the business perspective (Peras, 
2018). Different metrics were researched and are further explored in Section 5 as part of the evaluation 

process. 

3. TRITON – ARCHITECTURE 

The architecture of Triton is essentially composed by four components. The first of these components is the 
Conversational Agent. The Conversational Agent is the core of the proposed solution since it will contain all 

of the logic necessary to maintain conversations and execute actions. The Conversational Agent will need to 

communicate with at least three other components: an Input/Output Channel component, a component that 

allows interaction with the knowledge bases, and a component consisting in all Virtual Machines of the 

company’s infrastructure. Ideally, there will be only one instance of the Conversational Agent for two 

reasons: the scale of the chatbot to be developed does not justify multiple instances of the Conversational 

Agent, and the limited resources available to build the bot only allow to build a centralized approach. Having 

a single instance of the Conversational Agent has some benefits like the lower cost to host the solution, and 

the simplification of the development process since concurrency problems will not be an issue. On the other 

hand, the main drawback of this approach consists in it being limited regarding the number of users that will 

be able to have conversations simultaneously. 

As mentioned previously, the Input/Output Channel component is directly linked to the Conversational 
Agent and is used as the primary gateway between the user and the bot itself. Despite the Input/Output 

Channel not being directly part of the bot, it is the primary contact point for the user, and therefore has a huge 

importance regarding the perception of the bot by the users. With that in mind, the main focus will be to 

integrate the Conversational Agent with Google Chat given the fact that it has a user-friendly interface and 

allows for integration with bots through the available API. 

The knowledge bases are another essential component in Triton’s architecture. These knowledge bases 

contain information about various topics such as troubleshooting information or wiki pages.  

The first of these knowledge bases is Zeus. Zeus is a platform that serves as a human resource 

management platform, project management platform, and knowledge base. Zeus allows employees to log in 

and register in their personal timesheet how many hours they have been working, register travel expenses, 

schedule vacations, signal if they are working from home, access information about different ongoing 
projects, and access information about topics such as troubleshooting, configurations, onboarding of new 

employees, or human resources questions. To access information about employees, Zeus interacts with an 

employee database hosting all employee data such as available holidays or working hours. The second 

knowledge base to be presented is Athena. Athena is built using Redmine and serves as a repository of 

different kinds of information regarding topics ranging from development guidelines to specific information 

about projects. The third and last knowledge base to be presented is Cognos. Cognos is built using a tool 

called Confluence which is developed by Atlassian and serves as a knowledge repository for the company. 

Cognos is an effort of centralizing information scattered across different platforms such as Zeus and Athena, 

with the main goal of helping employees access information in a streamlined and easy way. To access 

Cognos, employees use their credentials, just like with Zeus and Athena, and additionally, a VPN connection 

is required to access the platform. Logged users may create additional pages about new topics or add pages to 
existing ones. An interesting feature of Cognos consists in the availability of an API that allows one to search 

for content either by using a specific identifier or by using the Confluence Query Language. 

The fourth and last component comprises the Virtual Machines present in the company’s infrastructure. 

This component does not interact directly with the Conversational Agent, being that it is accessed indirectly 

by it, through knowledge bases with the target of accessing information. 



 

Figure 2. Triton high-level architecture 

Figure 2 illustrates a high-level overview of Triton’s architecture, including the interactions between the 
different components. This picture is an abstraction of the implemented solution, lacking any technical details 

to avoid unnecessary complications. Information about tools used and implementation details are presented in 

the following section. 

4. TRITON – IMPLEMENTATION 

To implement Triton, the tool of choice was Rasa (Rasa, 2022). This tool was chosen largely due to two 
reasons: allowing the deployment in the company’s internal infrastructure and including an open-source 

component to develop the bot (Rasa Open Source). Additionally, Rasa includes an SDK that allows 

developers to write custom actions that can be triggered with certain user messages, being this a desirable 

trait for the problem at hand. These custom actions are executed by the Action Server, which will be the 

component of the bot responsible for interacting with the knowledge bases. As previously mentioned, the bot 

was integrated with Google Chat given that the company uses Google’s suite of tools internally, and due to 

the fact that by integrating the boot in Google Chat, the bot gains support for both desktop and mobile 

interfaces. Triton’s architecture is shown below in Figure 3, including the details regarding Rasa and the 

Google Chat integration. 

 

Figure 3. Detailed architecture 

Before starting the implementation of the chatbot itself, a process of intent definition and gathering of 

respective utterances was undertaken. The result was a set of intents that the bot should be able to recognize 

and answer, being that for each intent, a set of approximately 10 utterances was gathered to train the bot’s 

model. The process of gathering utterances was done using forms that collected data supplied by various 

employees that will become users in the future. This training data was used throughout the development 
stages of the bot and was tested at different moments to ensure that the model was behaving as expected. 

4.1 Deployment and infrastructure 

Regarding the deployment of the solution, there were three options available. The first option consisted in 

deploying the bot on the Google Cloud Platform, using the Compute Engine service. This service consists of 
customizable VMs that can be created in Google's infrastructure, and where one can deploy, for example, a 

chatbot built using Rasa. The second option consisted in deploying the solution in a machine present in 

VILT's own infrastructure. The third and last option consisted in deploying the bot in a cluster using 

Kubernetes. 

 



After discussions with the engineering team, from the three options available, it was decided that 

deploying in the company’s own infrastructure was the most adequate approach. By using an instance present 

in the infrastructure there is a higher degree of control regarding the access to information present in the 
instance, as well as allowing to save costs since there already exist machines waiting to be allocated to 

services. Besides the cost saving, deploying in the internal infrastructure may also grant some time savings, 

since it is easier to deploy the bot on a server, than in a Kubernetes Cluster. During the discussions, it was 

agreed that deploying the bot using Kubernetes would make sense if it was targeting a considerable number 

of users, which is not the case. Deploying in the GCP was also discarded since the costs to run the service 

would be significant. 

Despite not using Kubernetes to deploy the solution, using containers is still a very valid proposition. By 

deploying the chatbot using Docker there are some inherent benefits such as performance compared to 

Virtual Machines and the portability that containers offer. By containerizing the application, it becomes very 

simple to deploy it in any other system, having the assurance that it will behave exactly in the same way. 

With that in mind, the deployment shall be done using Docker and Docker Compose. 
Concerning the machine that will be used to deploy the bot, it is a remote Linux host with Ubuntu 20.04.3 

LTS as its operating system. The machine has a Intel Xeon Gold 6138 processor, paired with 16GB of 

memory, and 20GB of storage. 

4.2 Conversational Flows 

The normal conversational flows are those the bot is trained to reply to, and that the bot is able to identify 
with a high confidence level. These scenarios may be considered the best-case scenarios when designing the 

bot since they are those that developers thought about and that match the training data with a higher 

classification confidence level. 

The unsupported conversational flows are those which the bot is not trained to reply to or those which the 

bot attributes a low confidence level. If not handled properly, these scenarios may lead to a substandard 

experience for the user since the bot will either crash or will not reply to those specific conversations. 

The conversations that the bot is not trained to reply to are designated as out-of-scope conversations. In 

these scenarios, the bot should reply to the users informing them that it is not able to handle that 

conversation. Despite being a simple solution, it is a very effective one for the problem at hand given that the 

bot that is being implemented is a Business Bot, implying that conversations should be concise, which is the 

case (Shevat, 2017). 
There are also cases where the bot has a low classification confidence when predicting intents, in other 

words, the bot may not be sure if the message sent by the user matches a certain intent due to various reasons 

such as confusing message syntax or messages being too long or too short. Due to the frequency of these 

scenarios, it is important to control the outcome so that the user may have a more pleasant experience. This is 

done by implementing a fallback mechanism that either replies with a default message or tries to solve the 

existing ambiguity. To solve this ambiguity the bot may ask the user to rephrase the previous message. This 

is a very useful approach given that it is very likely that the user will rephrase the message sent in other 

words, thus helping the bot to classify the message with a higher confidence score. 

Considering the tool being used to build the bot, there exists the possibility of activating an existing 

fallback mechanism and tuning some aspects of it. Rasa's fallback mechanism is triggered when a message 

sent by a user is below a predetermined classification confidence level. This minimum threshold is defined in 
a configuration file, and through testing, it was agreed that the best relation between the number of fallback 

situations and classification accuracy resulted in a minimum threshold of 0.9. 

4.3 Action Server 

The Action Server is a critical component of the solution being implemented given that it contains all the 

code that executes custom actions triggered by messages received from the users. The Action Server is 
implemented in Python and uses the SDK made available by Rasa. 



 

Figure 4. Action Server file structure 

Figure 4 illustrates the file structure of the Action Server. The actions file includes the core of the Action 

Server, mainly all the structure of every available action. The auth file includes all functions related to the 

authentication process. The functions file consists of a small library of various functions needed to execute 

parts of different actions. The zeus file contains, as the name indicates, all the functions responsible for 

communicating with Zeus, similar to the cognos file which is responsible for all the functions related to 

searches on the Cognos wiki. The code isolation presented was chosen for maintainability reasons. 

The implementation of the search capabilities in the knowledge bases followed two different approaches. 
The first approach consists in using a local Redis database to store data and generate search URLs for the 

missing information. The second approach uses the Confluence REST API to search for information. 

Regarding the first approach, after implementing an testing it, some issues were discovered, being that the 

most important was the necessity of constantly updating the database so that its content does not become 

obsolete. Given this issue, the second approach using the Confluence REST API was implemented. With the 

REST API, the consistency problems were solved, and the overall architecture of the solution became a lot 

simpler, as can be seen in Figure 5. Another interesting feature of the REST API lies in the usage of the 

Confluence Query Language used to search for information in Cognos. Regarding this approach, the search 

flow has between one and three steps. When the bot receives a keyword to search for, the first step will be to 

search by the resource labels. If a match is found, the result is sent to the user, otherwise, the chatbot 

proceeds with the following step, which consists of repeating the search using the title as a search parameter. 
As with the previous step, if a result is found, it is sent to the user, otherwise, the third and last step is 

executed. The last step consists in performing a query that searches for resources that include the given 

keywords in their page content. Just like before, if a result is found, it is returned to the user. In this specific 

case, if no result is found, a negative value is returned by the Cognos module in the Action Server, which is 

then translated into a specific message informing the user that no content was found. 

 

Figure 5. Cognos search flow 

The security of the solution being developed was a major concern present in all decisions regarding the 

implementation of several functionalities, especially the ones interacting with Zeus. When interacting with 

these components, some prudence was needed regarding the approach that is used to implement the proposed 

requirements, given that some information should only be visible to specific users, and not all users should 

have the capability of executing the same set of actions. An example of this could be when a user wants to 

access information regarding a VM. Some VMs are only visible to a given set of users who have permission 

to do so. By allowing the bot to access information about VMs, this role authorization structure should be 

preserved. 

Regarding the solution being developed, the first challenge that surfaced was related to the fact that by 

default, Rasa's implementation for the Google Chat channel identifies the users by their display name, which 

consists of the user's first and last name. This is a serious problem given that there may exist multiple users 



with the same display names, leading to a scenario where the chatbot is incapable of differentiating users. To 

solve this issue, the source code of the Google Chat channel was adapted to deliver the user's email as its 

identifier, instead of the display name. The email of a user is always unique given that it is built by joining 
the user's unique username, to the company domain, therefore solving the issue.  

The ensuing challenge faced during the implementation of the chatbot was related to the authorization 

flow needed to access platforms like Zeus. When a user accesses Zeus, there is an assurance that the user 

only access resources to which it has access. Given that the bot will access resources on behalf of all users, it 

is important that the user permissions are preserved. To ensure this, the solution used consists in performing 

impersonation on top of the Zeus authentication workflow based on OAuth 2.0. To impersonate a user, the 

chatbot performs the steps described in Figure 6. 

In this flow, the chatbot starts by requesting an access token to the Authorization Server, which is then 

used to make another request to translate a given username into a User ID present in the Authorization 

Server. With this User ID, the chatbot is able to request an impersonation token for that user to the 

Authorization Server. After obtaining the impersonation token, the chatbot is able to use this token the same 
way as a regular access token, impersonating a given user. In the scenario where a user tries to access a 

resource for which it does not have permissions, the Authorization Server will deny access to the resource 

returning an HTTP 403 status code. With this flow, the user permissions are preserved when the chatbot 

accesses Zeus, and therefore, the security concern is solved. 

 

Figure 6. Impersonation flow 

5. TRITON – TOOL OVERVIEW 

The result of the implementation process is presented in this Section, including some examples of the most 

relevant functionalities. The first functionality to be shown is related to accessing the status of two different 

VMs, being that the impersonation flow is shown in action. This can be seen in Figure 7. The retrieval of 

information about a given VM is shown in Figure 8. 

 

 

Figure 7. VM status examples 

 

Figure 8. VM specifications example 

 



Figure 9 illustrates the search capabilities of the chatbot in VILT's knowledge bases. In this case, two 

possible outcomes are shown: an outcome where the chatbot finds a match and returns it to the user, and an 

outcome where the chatbot is not capable of finding any matches, therefore, returning a message informing 
the user of the situation. 

 

 

Figure 9. Search examples 

The last two examples to be shown include a simple scenario where a user asks for a new VM, receiving a 

link with VM templates shown in Figure 10 and a scenario where a user expresses the same intent in two 

different ways as shown in Figure 11. 

 

 

Figure 10. New VM ticket example 

 

Figure 11. VPN troubleshooting examples 

As part of the evaluation process of Triton, an experiment was conducted using a group of 9 employees at 

VILT with various roles inside the company. 78% of the enquired elements considered Triton’s answers to be 

clear; 89% considered the conversational experience as pleasant. About 67% considered that the bot correctly 

classified all the messages sent. Overall, 78% of the enquired users considered that Triton was capable of 

answering their questions or solving their problems and did not need to contact the helpdesk team. Regarding 

the researched metrics, two were calculated: the Goal Completion Rate, which is around 90%, and the 

Fallback Rate, which is about 4%. These results are encouraging and show that overall, Triton is well 

received by the users which tested it and is capable of helping them. 

6. CONCLUSION 

In this paper, a chatbot named Triton was presented. Triton aims to assist a helpdesk team of a consulting 

company in helping employees with common problems. The implemented solution was built using Rasa and 

is integrated into Google Chat, being capable of fetching information from the company’s various knowledge 

bases while preserving the user’s security permissions. This implementation differs from other existing ones1 

given the strong customization present in the Action Server made to suit VILT’s needs. 

For the sake of space, it was not possible to include all research about various chatbot concepts and tools, 
as well as research related to the Action Server. Nevertheless, this research was included in a Master’s 

dissertation about this topic (Ribeiro, 2022).  

The developed chatbot is currently in the final testing stages with a restricted group of employees. This 

testing process reveals the actual behavior of the chatbot with real users and is helpful in finding errors and 

bugs. Some of the most interesting lessons learned with the development of this solution lie in the complexity 

of integrating a bot inside a company’s infrastructure while preserving user permissions and without 

compromises.  

 
1 https://github.com/RasaHQ/helpdesk-assistant or https://github.com/ldulcic/customer-support-chatbot  



Future work includes working on the chatbot’s model so that it may handle a wider range of 

conversations, aiming to minimize the out-of-scope scenarios. Another direction for future work is the 

research for ways to overcome the limitation of only accessing information, making the bot also capable of 
executing actions, such as resetting VMs. Some aspects related to the security of the solution were considered 

in Subsection 4.3, while performance improvements are a topic to be studied in the future. 

ACKNOWLEDGEMENT 

This work has been supported by FCT – Fundação para a Ciência e Tecnologia within the R&D Units Project 
Scope: UIDB/00319/2020. 

REFERENCES 

Gilchrist, K., 2017. Chatbots expected to cut business costs by $8 billion by 2022. 
https://www.cnbc.com/2017/05/09/chatbots-expected-to-cut-business-costs-by-8-billion-by-2022.html 

Google, 2022. Dialogflow. https://cloud.google.com/dialogflow 

IBM, 2022. IBM Watson. https://www.ibm.com/watson 

Mctear, M., 2020. Conversational AI: Dialogue Systems, Conversational Agents, and Chatbots. Morgan & Claypool, 
Sebastopol, USA. 

Microsoft, 2022. Microsoft Bot Framework. https://dev.botframework.com/ 

Peras, D., 2018. Chatbot Evaluation Metrics: Review Paper. 36th International Scientific Conference 

on Economic and Social Development. Croatia, Zagreb, pp. 89-97. 

Rasa, 2022. Rasa. https://rasa.com/ 

Ribeiro, D., 2022. Chatbot for VILT’s Helpdesk Team (Master's thesis, University of Minho, Braga, Portugal). To Be 
Discussed 

Shevat, A., 2017. Designing Bots: Creating Conversational Experiences. O'Reilly Media, San Rafael, USA. 

Statista, 2022. Most popular social networks worldwide as of January 2022, ranked by number of monthly active users. 
https://www.statista.com/statistics/272014/global-social-networks-ranked-by-number-of-users/ 

Wit.ai, 2022. Wit.ai. https://wit.ai/ 

 


