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ABSTRACT 

Recent developments in maintenance modeling, powered by data-driven approaches such as Machine Learning (ML), have 
enabled a wide range of applications. For example, industrial systems coming with a huge operating database make ML an 
ideal candidate for their predictive maintenance (PdM). PdM is the process of predicting malfunctions using data from 
equipment monitoring and process performance measurements. Indeed, PdM and ML have developed a very strong 
connection. However, it is not always easy or straightforward to perform effective predictive maintenance for several 
reasons such as imperfect data. Therefore, we aim, during this paper, to manage uncertainty and/or imprecision during 
learning, using an evidential supervised learning approach built on a powerful framework called the belief function theory. 

This research work is applied on NASA’s C-MAPSS dataset for turbofan engines failure prognosis. 
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1. INTRODUCTION 

Today, a new revolution is emerging with “The Fourth Industrial Revolution”, a term also known as “Industry 

4.0”. It is primarily merging automation with advanced manufacturing to reduce direct human effort and 

resources. The diffusion of new digital technologies using connected objects, the Internet of Things, cloud, and 

artificial intelligence have led to the development of a new concept of maintenance known worldwide under 

the name intelligent predictive maintenance for Industry 4.0. Nowadays, Prognostic and Health Management 

(PHM) systems are some of the main protagonists of the Industry revolution. PHM is a research area with 

multiple methodologies and functions as a decision support tool that aims at minimizing maintenance costs and 

predicting when a failure could occur by the assessment, prognosis, diagnosis, and health management of 
engineered systems. The core of PHM is failure prognostic. It refers specifically to the phase involved with 

predicting future behavior and the system’s useful lifetime left in terms of the current operating state and the 

scheduling of required maintenance actions to maintain system health. This useful lifetime is often called the 

remaining useful life (RUL) and is defined as the length from the current time and operating state to the end of 

the useful life. The notice of pending equipment failure allows for sufficient lead time so that necessary 

decisions, personnel, equipment, and spare parts can be organized and deployed, thus minimizing equipment 

downtime and repair costs. By leveraging RUL estimation, industries, such as aerospace, maritime, and energy, 

can improve maintenance schedules to avoid catastrophic failures and, consequently, save lives and costs. The 

industry has also to assure that its asset utilization is optimum by guaranteeing timely, but not premature. 

Furthermore, this practice promotes sustainability as the use of spare parts is optimum and no useful life is 

wasted. There are different recent works that have been used in literature for predictive maintenance and 
reliability engineering. Some of these approaches are Markov chains (Tierney, 1996), Petri nets (Chaouiya, 

2007), fault tree analysis (Lee, et al., 1985), and analytic hierarchy process (Vaidya & Kumar, 2006).  

In addition, quantitative methods have been proposed using heuristic methods (Kleining & Witt, 2001), 

simulation techniques (Rivera-Gómez, et al., 2020), and analytical methods (Angius, et al., 2018). Among 

approaches used for PdM, machine learning-based ones are considered to be the most suitable approaches 

because they can handle high-dimensional problems that consist of hundreds or thousands of variables such as 



voltages, flows, and currents (Susto, et al., 2014). There exist two main categories of machine learning-based 

techniques for PdM. The first one is supervised approaches where the failure information exists in the dataset. 

The second one is unsupervised approaches, where there is only process information, and no failure-related 
information exists. KNN generally depends on unsupervised learning procedures where distances between 

classes in the neighborhood play an important role in PHM. However, most often, the data are imperfect and 

uncertain. Indeed, the source providing the information may be insecure or prone to making mistakes or giving 

intentionally incorrect information. To tackle this problem, there are several theories that can be used such as 

probability theory, fuzzy set theory (Zadeh, et al., 1996), possibility theory (Dubois & Prade, 1995), and belief 

function theory (Dempster, 1967; Shafer, 1976). In this paper, we will manage this uncertainty within the 

framework of the belief function theory, which has been applied in different fields (Ben Ayed, et al, 2022). For 

it, the paper is organized as follows: Section 2 gives an overview of the basic concepts regarding the belief 

function theory. Section 3 gives an overview of the data analysis, including the approach used in the 

experimental verification to analyze the residuals. Section 4 gives the experimental results on the real use case 

where the evidential machine learning based approach for PdM has been implemented and tested. 

2. THE BELIEF FUNCTION THEORY: BASIC CONCEPTS 

The belief functions theory, also known by the evidence theory or the Dempster-Shafer theory (Dempster, 

1967; Shafer, 1976), is an ideal tool for modeling uncertainty and imprecision. This theory has been interpreted 

differently using several models such as the Transferable Belief Model (TBM) (Smets, 1998). Consider a set 

Ω called the frame of discernment, containing the elementary and exclusive hypotheses of a given problem. 

The key point of this theory is the basic belief assignment (bba) which is noted 𝑚: 2𝛺 → [0,1] as a belief 

function that satisfies the following normalization condition: 

∑ 𝑚(𝑋) = 1

𝑋⊆𝛺

 

A bba allows for the assignment of elementary beliefs on different combinations of hypotheses. The 

uncertainty about a hypothesis A ⊆ Ω is modeled by the value of the bba: the higher the bba is (close to 1), the 

more confidence there is in A. However, if the value of bba is low (close to 0), it means that few pieces of 

evidence support A. The hypothesis A is called focal element if 𝑚(𝐴) > 0. Other belief functions can be defined 

such as the credibility function (Bel) and the plausibility function (Pl). They are defined, respectively, as 

follows: 
 

𝐵𝑒𝑙(𝐴) = ∑ 𝑚(𝐵)∅≠𝐵⊆𝐴  and 𝑃𝑙(𝐴) = ∑ 𝑚(𝐵)𝐴∩𝐵≠∅ . 

Given 𝑚1 and 𝑚2 deux bbas on 𝛺 induced from two independent sources of information. They could be 

combined to yield a new bba 𝑚12 using, for instance, the Dempster’s rule of combination which is identified 

by the orthogonal sum ⊕ and is defined such that: 
 

𝑚12(∅) = (𝑚1 ⊕ 𝑚2)(∅) = 0 
and 

𝑚12(𝐴) = (𝑚1 ⊕ 𝑚2)(𝐴) =
∑ 𝑚1(𝐵).𝑚2(𝐶)𝐵,𝐶⊆𝛺;𝐵∩𝐶=𝐴

1−𝜅
     𝑤𝑖𝑡ℎ 𝐴 ⊆ 𝛺; 𝐴 ≠ ∅ 

 

where 𝜅 presents the conflict degree and is defined such as: 𝜅 = ∑ 𝑚1(𝐵). 𝑚2(𝐶)𝐵∩𝐶=∅  
Finally, to make a decision within the belief function theory, several solutions have been proposed. For 

instance, the Pignistic Probability (BetP), which is offered by Smet’s TBM model (Smets, 1998), is considered 

as a powerful way for decision making. To do, the event 𝜔 ∈ 𝛺 having the highest value of BetP, according 

to the following equation, will be selected: 

𝐵𝑒𝑡𝑃(𝜔) = ∑
𝑚(𝐴)

|𝐴|
𝜔∈𝐴

      ∀𝜔 ∈ 𝛺   



3. EVIDENTIAL KNN BASED APPROACH FOR TURBOFAN ENGINES 

FAILURE PROGNOSIS 

This section presents a case study of the proposed method using NASA’s C-MAPSS dataset for engine 

performance degradation tracking and RUL prediction. The dataset is generated from a C-MAPSS commercial 

turbofan engine simulator (Dean, et al., 2012). The role of prognostics is particularly important in the context 

of aircraft engine health condition assessment due to the high cost associated with in-flight malfunctions, 

maintenance-related delays and cancellations, increased fuel consumption, and especially, potential loss of 

human lives. The main contribution of this work is to build a RUL prediction model using an evidential KNN. 

The proposed RUL prediction process is shown in Figure 1, and the procedure in each step is detailed in the 

following subsections. 

 

Figure 1. Flowchart of the proposed approach 

3.1 Commercial Modular Areo Propulsion System 

Prognostics estimates remaining useful component life. The remaining useful life estimates are in units of time. 

Commercial Modular Aero Propulsion System Simulation (C-MAPSS) (Abhinav, et al., 2008) datasets were 

generated to allow the development and benchmarking of various prognostic approaches. C-MAPSS is a tool 

for simulating a realistic large commercial turbofan engine. Figure 2 is a simplified diagram of the simulated 

turbojet engine showing the main components, such as the low-pressure compressor (LPC), the high-pressure 

compressor (HPC), the fan, and the combustor. 

 

Figure 2. Simplified diagram of a simulated turbojet in C-MAPSS 



The C-MAPSS datasets pose several challenges, in particular, management of high variability due to sensor 

noise, effects of operating conditions, and presence of multiple simultaneous fault modes are some factors that 

have a great impact on the generalization capabilities of prognostics algorithms. Four datasets have been 
generated which are called turbofan datasets and consist of training and test data. A learning instance represents 

the degradation of a turbojet engine seen by 21 sensors. At each operational cycle of an engine, one observation 

is logged in the form of a multivariate observation comprising the measurements of 21 sensors, three 

operational parameters, a timer feature, and the engine ID. The C-MAPSS data have been split into four  

sub-datasets (FD001, FD002, FD003, FD004). Each dataset can operate under different operating conditions 

and the system failure can be caused by two components: the turbine and the compressor. Thus, FD001 and 

FD003 operate under the same conditions although FD003 includes engines whose failure could be caused by 

either of the two mentioned components. Then, FD002 operates under 6 operating conditions as does FD004, 

while in FD004, as in FD003, the failure conditions cover both turbine and compressor failure as shown in 

Table 1. 

Table 1. Information on the C-MAPSS dataset 

Sub-Dataset names FD001 FD002 FD003 FD004 
Turbofan for train 100 260 100 249 
Fault Modes HPC HPC HPC, and Fan HPC, and Fan 
Operating condition 1 6 1 6 

3.2 Data Pre-Processing 

Pre-processing data is intended to transform the raw data into a format that is easier and more effective to use 

for future processing steps. For each subset, the 21 sensors record different data, and the data range between 

different sensors varies significantly. Feature Selection (FS) is the process of reducing the number of input 

variables when developing a predictive model, this step aims to select the best feature in the data set. FS helps 

understand the data, reduces computing needs, and improves performance. In fact, from analyzing the statistical 

properties of each feature, it was observed that not all sensor measurements provide useful information for 

RUL prediction. For example, the standard deviation of sensors 1, 5, 6, 10, 16, 18, and 19 is statistically 

insignificant in FD001, therefore, the variables will be excluded from the rest of the study. In addition, 

unprocessed data affected the performance of predicting the engine RUL, so it is essential to standardize the 

data. Data normalization is an essential step in data pre-processing. Normalization can improve the training 
time because all data used in training have the same scale, in the range of 0 and 1. For this purpose, the 

following formula is implemented, where  and  represent, respectively, the maximum and the 

minimum and values of each feature: 

 

 

Before proceeding with a complicated task such as RUL estimation, a simpler task such as turbojet health 

classification can show the complexity of the problem. The first and last 50 cycles of each unit are considered 

healthy and faulty respectively. We have chosen to delimit the classes by 50 cycles to have balanced data 

between the three classes. 

3.3 Evidential Learning on the C-MAPSS Dataset 

In order to manage uncertainty during the supervised learning step of our proposal, we perform the Evidential 

k-Nearest Neighbor (EK-NN) (Denoeux, 1995) that is a pattern classification method based on the belief 

function theory. Contrary to the hard KNN classification method, EK-NN offers, as output, a credal 

classification of data instances, which presents a richer information content. According to EK-NN method, the 

frame of discernment 𝛺 contains the set of N possible classes. In the frame of C-MAPSS dataset classification, 



we define 𝛺 as the set containing three classes such as: 𝛺 = {𝐶1, 𝐶2, 𝐶3}, with 𝐶1, 𝐶2, 𝐶3 referring, 

respectively, to “Normal”, “Moderate degradation”, “Near-to-failure degradation”. The first and last 50 cycles 

of each unit are considered as a criterion for determining the engine's Near-to-failure degradation and Normal 
status, respectively. 

Let 𝑋𝑖 be the set of all the 𝑛 objects within the C-MAPSS dataset, defined as 𝑋𝑖 = {𝑋1, 𝑋2, . . . , 𝑋𝑛}, and 𝑋 

is a new object to be classified. Classifying 𝑋 means assigning it to one class in 𝛺 which is done through 

handling pieces of evidence to manage uncertainty regarding that assignment. We note, also, 𝑁𝐾(𝑋) as the 

ensemble of the K-Nearest Neighbors of 𝑋. 

3.3.1 The EK-NN Method 

Based on the selected training set of C-MAPSS dataset, the evidential k-NN method classifies every new 

instance 𝑋 that should be assigned to one class of the selected neighbors modeled by 𝑁𝐾(𝑋). However,  

EK-NN models the knowledge regarding the assignment of each neighbor 𝑋𝑗  to its class 𝐶𝑞 ∈ 𝛺 through a 

piece of evidence. For this reason, the cardinality of 𝑁𝐾(𝑋) identifies the number of bba functions to be 

handled, where each function supports a number of hypotheses towards the class of the object 𝑋 to be classified. 

These pieces of evidence are built in function to the distance between 𝑋 and every neighbor 𝑋𝑗  (e.g., the 

euclidean distance). For every 𝑋𝑗 ∈ 𝑁𝐾(𝑋), the knowledge that 𝐿𝑗 = 𝐶𝑞 is seen as a piece of evidence that 

boosts our belief regarding the assigning of 𝑋 to 𝐶𝑞 . Since we cannot be totally certain towards this piece of 

evidence, the Dempster-Shafer formalism allows to model it by saying that only some part of our belief is 

committed to 𝐶𝑞. To do, EK-NN uses a function, called the simple support function, where the bba has only 

one focal element aside the frame of discernment 𝛺. It is, therefore, defined as follows: 

𝑚𝑋,𝑋𝑗
({𝐶𝑞}) = 𝛼 

𝑚𝑋,𝑋𝑗
({𝛺}) = 1 − 𝛼 

 𝑚𝑋,𝑋𝑗
({𝐶}) = 0          ∀𝐶 ∈ 2𝛺{𝛺, 𝐶𝑞} 

where 𝛼 is defined in what follows in function to the euclidean distance between X and its neighbor 𝑋𝑗  denoted 

by 𝑑(𝑋, 𝑋𝑗), a constant 𝛼0 fixed to 0.95, and a positive parameter 𝛾𝑞assigned to each class 𝐶𝑞: 

𝛼 = 𝛼0𝑒𝑥𝑝−(𝛾𝑞
2  d(X,Xj)2) 

Once the 𝐾 different bbas are generated by the EK-NN, they will be combined using the Dempster’s rule 

of combination such that: 

𝑚𝑋 = 𝑚𝑋,𝑋1
⊕ 𝑚𝑋,𝑋2

⊕ … ⊕ 𝑚𝑋,𝑋𝐾
 

3.3.2 The Credal Classification Partition and Decision Making 

As a result of its strategy, EK-NN provides a credal classification partition that allows each object to be 

assigned, with a degree of belief, not only to all the classes but also to the total ignorance defined by 𝛺. In our 

context, this classification partition 𝑀 presents an 𝑛 × 4 matrix; The rows of 𝑀 are the instances in the  

C-MAPSS dataset and the columns refer respectively to 𝑚𝑋𝑗
(𝐶1), 𝑚𝑋𝑗

(𝐶2), 𝑚𝑋𝑗
(𝐶3), and 𝑚𝑋𝑗

(𝛺), which 

makes the sum of all the columns’ values, in every row, is equal to 1. To make decisions regarding the class 

of each object, we need to move on from the credal level to the pignistic level. To do so, the aforementioned 

pignistic probability method has been used. 

4. EXPERIMENTAL ANALYSIS 

In this article, the experiments are carried out on C-MAPSS data, which are assumed to be uncertain and 
imperfect. Classic RUL predictions do not take into account the uncertainty of the data, therefore the aim of 

this experimentation is to use evidential KNN to predict RUL and compare the performance with the existing 



machine learning models in the literature. For each prediction model, we obtain results from the RULs that we 

will compare to know the best model. 

The evclass package in the R environment currently contains functions for the evidential K-nearest neighbor 
(EK-NN) rule (Denoeux, 1995; Zouhal, & Denoeux, 1998]). In contrast with classical statistical classifiers, 

evidential classifiers quantify the uncertainty of the classification using Dempster-Shafer mass functions. The 

main functions are EkNNinit, EkNNfit, and EkNNval for the initialization, training, and evaluation of the  

EK-NN classifier. 

4.1 Parameters’ Setting 

The principle of the evidential K-nearest neighbor (EK-NN) classifier is explained in Section 3.3.1, and the 

optimization of the parameters of this model is presented in (Zouhal & Denoeux, 1998). Here, we focus on the 

practical application of this method using the functions implemented in evclass (Denoeux, 2017). The EK-NN 

classifier is implemented through three functions: EkNNinit for initialization, EkNNfit for training, and 

EkNNval for testing. Let us initialize the classifier with 𝐾 = 45 neighbors. EkNNval classified instances in a 

test set using the EV-KNN classifier. EkNNval is used in the following form: 

The used parameters are: 

● Xtrain: Matrix of size 𝑛𝑡𝑟𝑎𝑖𝑛 × 𝑑, containing the values of the d attributes for the training data. 

● Ytrain: Vector of class labels for the training data. 

● Xtst: Matrix of size 𝑛𝑡𝑠𝑡 × 𝑑 x d, containing the values of the d attributes for the test data. 

● K: Number of neighbors. 
● Ytest: Vector of class labels for the test data. 

● Param: Parameters, as returned by EkNNfit. 

4.2 Evaluation Criteria 

In this study, precision, recall, and F1 are used to evaluate the performance of the proposed model of RUL 
estimation. The confusion matrix is a cross table between the actual values and the predictions. Precision is the 

accuracy of positive predictions calculated by:  

                                                                                                                            

where TP is True Positives and FP is False Positives. 
Recall is the fraction of correctly identified positives calculated by:   

                                                                                                                   

where FN is False Negatives. 
F1 Score is a metric for comparing two classifiers. It is obtained by finding the harmonic mean of precision 

and recall.  

The support is the number of occurrences of each class. 
The confusion matrix for the dataset FD001 indicates that 299 instances of class Near-to-failure 

degradation status were correctly predicted on the support of 998, 206 were wrongly predicted as Moderate 

degradation status, while the class Normal turbofan engine has only 89 wrongly classified instances on the 

support of 1011. This appears reasonable considering the difference in the number of instances. It is expected 

that the classifier mistakes class Moderate degradation status for class Near-to-failure degradation status as 
the environmental measurements or both classes do not differ significantly. 

 



4.3 Results and Discussion 

Overall, the models achieved accurate results for the prediction of the RUL of aircraft engines in the testing 

set. Based on the three evaluation criteria, Tables 2, 3, 4 and 5 present the performance of the trained models 

on the testing set for the four aforementioned datasets. 

Table 2. Obtained results in terms of Precision, Recall, F1, and Support for FD001 

Average Precision Recall F1 Support 

KNN 0.70458 0.7 0.7022 4 127 

EV-KNN 0.70471 0.7 0.7031 4 127 

Table 3. Obtained results in terms of Precision, Recall, F1, and Support for FD003 

Average Precision Recall F1 Support 

KNN 0.74406 0.73 0.7369 4 944 

EV-KNN 0.74459 0.71 0.7268 4 944 

 

Tables 2 and 3 show the classification results of KNN and EV-KNN, when applied on the FD001 and 

FD003 datasets. The number of predicted instances is 4127 and 4944, respectively. In addition, we note that 

results are somehow competitive, with some benefits offered by EV-KNN. For instance, the EV-KNN classifies 
positive classes more accurately with a precision of 0.7047 for FD001 and 0.74459 for FD003, while KNN 

follows closely but achieves higher recall and F1 score on FD003. 

Table 4. Obtained results in terms of Precision, Recall, F1, and Support for FD002 

Average Precision Recall F1 Support 

KNN 0.70710 0.7 0.7034 10 752 

EV-KNN 0.70705 0.7 0.7035 10 752 

Table 5. Obtained results in terms of Precision, Recall, F1, and Support for FD004 

Average Precision Recall F1 Support 

KNN 0.73506 0.69 0.7118 12 250 

EV-KNN 0.73497 0.7 0.7146 12 250 

 

As mentioned in Tables 4 and 5, EV-KNN and KNN are applied to FD002 and FD004, which contain a 

higher number of observations. The number of predicted instances is 10752 for FD002 and 12 250 for FD004, 

which provides more instances to accurately evaluate the results. We observe that in a different operation 

condition than in FD001 and FD003, the EV-KNN did not manage to achieve higher precision values than 

KNN. This might be due to the more complex behavior of the sensor measurements. 

Finally, we remark that results show that the evidential based predictions can provide better performance 

in predicting the RUL. It has a slightly better performance compared to the hard KNN. However, the precision 

does not significantly outperform the KNN model. The evidential approach showed higher performance on 

smaller datasets such as FD001 and FD003, whereas on FD002 and FD004, the task is more complex, and the 
prediction is affected by the dataset type. In all predictions, the performance of the models on FD003 

outperforms their performance on the rest of the datasets. 



5. CONCLUSION 

This article has implemented a supervised learning-based approach for turbofan engines failure prognosis and 

described how to manage the uncertainty within this data to develop and test prognostic algorithms. An 

aerodynamic propulsion system simulator, C-MAPSS, was used in this study. With the assumption that the 

data are uncertain and imperfect, the use of the evidential KNN model seems more effective than the hard KNN 

model according to the carried out experiments. The evidential technique has the potential to deal with complex 

sensor readings, and therefore avoid poor decision-making, which can lead to devastating consequences. 
However, the prediction aspect requires improvement and careful feature engineering by looking at similarities 

across similar units and identifying faulty sensor readings. In future studies, the predictive models should be 

improved by investigating more complex machine learning techniques merged with evidential theories, on 

larger datasets of different aerospace engine reading scenarios. 

REFERENCES 

Abhinav, S., Member IEEE, Kai, G., Do, S., Member, IEEE, Neil. E, Member IEEE, (2008). Damage Propagation 

Modeling for Aircraft Engine Run-to-Failure Simulation. 

Angius, A., Colledani, M., & Yemane, A. (2018). Impact of condition based maintenance policies on the service level of 
multi-stage manufacturing systems. Control. Eng. Pract.76, 65–78.  

Ben Ayed, S., Elouedi, Z., & Lefevre, E. (2022). CIMMEP: constrained integrated method for CBR maintenance based on 
evidential policies. Applied Intelligence, 52(6), 6939-6954. 

Chaouiya, C. (2007). Petri net modelling of biological networks. Briefings in bioinformatics, 8(4), 210-219. 

Dean, K. F., Jonathan, A. D., & Jonathan, S. L. (2012). User’s guide for the commercial modular aero-propulsion system 
simulation (C-MAPSS). Tech. rep. 

Dempster, A. P. (1967) Upper and lower probabilities induced by a multivalued mapping. The annals of mathematical 
statistics, 325-339. 

Denoeux, T. (1995). K-nearest neighbor classification rule based on Dempster-Shafer theory. IEEE Trans. Syst. Man 
Cybern. 25(5), 804–813. 

Denoeux, T. (2017). Evidential Distance-Based Classification. 

Dubois, D., & Prade, H. (1995). Possibility theory as a basis for qualitative decision theory. In IJCAI (Vol. 95), 1924-1930. 
Kleining, G., & Witt, H. (2001). Discovery as basic methodology of qualitative and quantitative research. In Forum 

Qualitative Sozialforschung/Forum: Qualitative Social Research (Vol. 2, No. 1). 

Lee, W. S., Grosh, D. L., Tillman, F. A., & Lie, C. H. (1985). Fault tree analysis, methods, and applications: a review. 
IEEE transactions on reliability, 34(3), 194-203. 

Rivera-Gómez, H., Gharbi, A., KennÉ, J.P., & Montaño-Arango, O. Corona-Armenta, J.R. Joint optimization of production 

and maintenance strategies considering a dynamic sampling strategy for a deteriorating system. Comput. Ind. Eng. 
2020, 140, 106273. 

Shafer, G. (1976). A mathematical theory of evidence. Vol. 1. Princeton: Princeton university press. 

Smets, P. (1998). The transferable belief model for quantified belief representation. In Quantified Representation of 
Uncertainty and Imprecision, 267-301. Springer, Dordrecht. 

Susto, G. A., Schirru, A., Pampuri, S., McLoone, S., & Beghi, A. (2014). Machine learning for predictive maintenance:  
A multiple classifier approach. IEEE Trans. Ind. Inform., 11, 812–820. 

Tierney, L. (1996). Introduction to general state-space Markov chain theory. Markov chain Monte Carlo in practice,  
59-74. 

Vaidya, O. S., & Kumar, S. (2006). Analytic hierarchy process: An overview of applications. European Journal of 
operational research, 169(1), 1-29. 

Zadeh, L. A., Klir, G. J., & Yuan, B. (1996). Fuzzy sets, fuzzy logic, and fuzzy systems: selected papers (Vol. 6). World 
Scientific. 

Zouhal, L. M., & Denoeux, T. (1998). An evidence-theoretic k-NN rule with parameter optimization. IEEE Transactions 

on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 28(2), 263-271. 


